Provable Convergence and Limitations of Geometric Tempering for Langevin Dynamics

ENSAE

O. Chehab, A. Korba, A. Stromme, A. Vacher {adrien.vacher,emir.chehab}@ensae.fr

Background

Sampling process: Annealed Langevin Dynamics

Prescribed path: Interpolate target and Gaussian, using the geometric mean.

$$
\mu_t(x) = c_t \pi(x)^{\lambda_t} \times \mathcal{N}(x; 0, I)^{1 - \lambda_t}
$$
, increasing schedule $\lambda_t \in [0, 1]$

Multimodality appears in small (inverse) log-Sobolev constant $\alpha_t \geq 0$.

This path is computationally convenient: the scores $\nabla \log \mu_t(x)$ are known when π is

known up to a normalizing constant. But does it **accelerate convergence?**

$$
dx_t = \nabla \log \mu_t(x_t) dt + \sqrt{2} dw_t
$$

Our results

Convergence is guaranteed: upper bound

Convergence can be accelerated for a unimodal and peaky target: optimal schedule

Convergence is provably slow for a multimodal target**:** lower bound

$$
KL(p_t, \pi) \le \exp(-2\int_0^t \alpha_s ds) \cdot KL(p_0, \mu_0) + (1 - \lambda_t)A + A\int_0^t \lambda_s \exp(-2\int_s^t \alpha_v dv)ds
$$

Initial condition *Terminal condition* Speed of traversal
vs. Multimodality

1 for a peakier target,
$$
\alpha_{\pi} \ge \alpha_{\nu}/2
$$

$$
\lambda(t) = \begin{cases} 1 & \alpha_{\nu} = 1 + \alpha_{\nu}t \\ \frac{\alpha_{\nu}}{\alpha_{\nu} - \alpha_{\pi}} \frac{1 + \alpha_{\nu}t}{2 + \alpha_{\nu}t} \end{cases}
$$

for a flatter target,
$$
\alpha_{\pi} < \alpha_{\nu}/2
$$

$$
TV(p_t, \pi) \ge \frac{1}{20} - 16 \cdot t \cdot e^{-m^2/64}
$$

Convergence time is exponential in the distance m between target modes.