Provable benefits of annealing for estimating normalizing constants: Importance Sampling, Noise-Contrastive Estimation, and beyond.

universite

Carnegie Mellon University UNIVERSITY OF HELSINKI **PARIS-SACLAY Approach:** write the estimation error (MSE) **Contributions:** compare the estimation error (MSE) produced by different annealing choices. produced by different annealing paths. **Annealed Estimation of a Normalizing Constant** Estimation error produced by different estimators In the limit of many distributions $K \to \infty$, we prove that the annealed importance sampling and noise-contrastive estimators produce the same estimation error (MSE) of the target log-normalization: $|MSE = \frac{1}{N}|^{-1} I(t)$ $\log p_t(x)^2$] Fisher Information of $p_t(x)$ $f_1(x)dx$ To reduce the error: increase the sample size N or reduce the path length between the target and proposal $\int I(t) dt$ measured by summing the Fisher Information of distributions along the path. Estimation error produced by different paths Assume the target and proposal are in exponential family with parameters θ_1 and θ_0 . We study the length I(t)dt of common paths as a func. of the gap between the target and proposal $\|\theta_1 - \theta_0\|^2$: No path p_1 p_0 Arithmetic path: $p_t(x) \propto (1-t)p_0(x) + tf_1(x)$

Question: when does annealing reduce the estimation error (MSE) of a log-normalizing constant? In many areas of statistics, a target distribution is specified by an **unnormalized** density $f_1(x)$. Evaluating the probability requires computing the normalization Z_1 defined by an often intractable integral. The (log) normalization can be estimated using a random sample from K + 1 distributions that link the intractable target p_1 to a tractable proposal p_0 Using the identity,

$$p_1(x) = \frac{f_1(x)}{Z_1}$$
 $Z_1 =$

 $\log Z_1$

 $\sum \log \left(\frac{Z_{k/K}}{Z_{(k-1)/K}} \right)$

unknown

each log-ratio is estimated by solving a binary classification task between samples from $p_{(k-1)/K}$ and $p_{k/K}$. Different classification losses lead to the noise-contrastive or importance sampling estimators.

 $\log Z_0$

known

A same estimation error requires a sample size that is exponential using no path, polynomial using the geometric path, and constant using the optimal path — all relative to the target-proposal gap.

But there is no free lunch: the optimal path is an arithmetic path that is reparameterized using the unknown Z_1 . We pre-estimate it in a two-step procedure.

Omar Chehab, Aapo Hyvärinen, Andrej Risteski

$$(t)dt + o\left(\frac{1}{N}\right) + o\left(\frac{K^2}{N}\right), \text{ with } I(t) = \mathbb{E}_{x \sim p_t}[\partial_t t]$$

Geometric path: $p_t(x) \propto p_0(x)^{1-t} \times f_1(x)^t$ **Optimal** path: $p_t(x) = \cos^2\left(\frac{\pi}{2}t\right)p_0(x) + \sin^2\left(\frac{\pi}{2}t\right)p_1(x)$

$$MSE = O\left(\frac{1}{N}\exp(\|\theta_1 - \theta_0\|^2)\right)$$
$$MSE = O\left(\frac{1}{N}\exp(\|\theta_1 - \theta_0\|^2)\right)$$
$$MSE = O\left(\frac{1}{N}\operatorname{poly}(\|\theta_1 - \theta_0\|^2)\right)$$
$$MSE = O\left(\frac{1}{N}\operatorname{poly}(\|\theta_1 - \theta_0\|^2)\right)$$